для чего нужны аэрокосмические снимки в географии
Зачем нужны спутниковые фотографии и как наблюдать за изменениями на Земле из космоса
Лесные пожары, таяние ледников, перемещения беженцев и миграция птиц — спутниковые наблюдения дают массу полезной информации для политиков и бизнеса. Тайга.инфо объясняет, кто, как и зачем следит за Землей из космоса.
Зачем нужны спутниковые наблюдения?
Чтобы узнавать о природных бедствиях, отслеживать состояние полей, следить за вырубкой лесов и уровнем воды. Полученные из космоса данные нужны для картирования городской застройки и планирования объектов инфраструктуры. Космические наблюдения позволяют контролировать эффективность работы заводов и портов, оценивать транспортную доступность районов. Спутниковые снимки используют разведывательные службы разных стран, а еще они нужны журналистам, чтобы следить за перемещением беженцев.
Как можно следить за планетой из космоса?
Космические агентства запускают спутники со специальной аппаратурой. Камеры многих спутников позволяют делать снимки с разрешением меньше 30 сантиметров — лиц разглядеть не получится, но увидеть одежду людей уже можно. Недавно два школьника из Подмосковья проанализировали снимки, полученные со спутников разных стран, и нашли новый остров у архипелага Новая Земля.
Частная компания Planet Labs запустила больше 100 маленьких космических аппаратов на орбиту. Доступ к снимкам может получить кто угодно за абонентскую плату.
Космонавты и астронавты на борту МКС тоже смотрят за тем, что происходит на планете. Кроме фотоаппаратов с большими длиннофокусными объективами в их распоряжении есть научая аппаратура, например, ультрафиолетовые камеры, спектрометры, видеокамеры и многое другое.
В программу пребывания на МКС у космонавтов входят различные эксперименты по наблюдению за Землей. Например, для эксперимента по изучению физических процессов в околоземном космическом пространстве «Всплеск» космонавтом нужно смонтировать научную аппаратуру внутри станции и вне ее во время выхода в открытый космос. Этот эксперимент помогает понять природу сейсмомагнитных явлений и позволяет продвинуться в разработке методов прогноза землетрясений. А эксперимент «Молния-Гамма» позволяет получать новую информацию для обеспечения безопасности полетов в грозовой атмосфере.
Какие еще эксперименты проводят космонавты?
Фото- и видеосъемки космонавтов нужны, например, в эксперименте «Сейнер» для поиска и освоения промыслово-продуктивных районов Мирового океана. Эксперимент «Экон-М» проводится, чтобы получать информацию для оценки экологических последствий техногенной деятельности человека на территории России и других стран.
Благодаря эксперименту «Сейсмопрогноз» можно отрабатывать методы мониторинга предвестников землетрясений, чрезвычайных ситуаций и техногенных катастроф. За мониторинг лесных экосистем отвечает эксперимент «Дубрава» — с его помощью можно определять воздействия на лесной покров природных и техногенных факторов.
Эксперимент «Сценарий» нужен для определения скорости и момента схода ледников, оценки развития наводнений, загрязнений на водной поверхности (например, разлива нефти). Кроме того, благодаря «Сценарию» космонавты могут смотреть за перемещениями животных и птиц и по ним определять места возникновения природных катастроф.
Как передают данные наблюдений за планетой с МКС на Землю?
Результаты, полученные во время исследований, космонавты отправляют на Землю на жестких дисках, компакт-дисках, видеокассетах мини-DV, «флэшках» или даже дискетах.
Если нужно оперативно доставить до Земли информацию, то она сначала накапливается в памяти модуля контроля и сбора данных, оттуда передается в блок сервера полезной нагрузки, а затем в радиотехническую систему передачи информация для получения на Земле. Кажется, что это сложно и долго, но получается все равно быстрее, чем передавать данные непосредственно транспортировкой на Землю.
Какую технику используют космонавты при наблюдениях?
Кроме специальной аппаратуры, космонавты используют и привычные нам устройства — например, фотоаппараты и ноутбуки. Порой на фотоаппараты Nikon или видеокамеры Sony приходится ставить особые фильтры, о которых написано в инструкции по проведению опыта. Там же есть указания, каким из ноутбуков Lenovo нужно пользоваться и какой картой памяти. Для личных целей космонавты и астронавты чаще пользуются планшетами.
Для чего нужна аэрофотосъемка и преимущества ее проведения
Аэрофотосъемка – вид работы, при помощи которой получают планы местности с высокой точностью, имеющие привязку к любой сети координат. Основной используемый для этого инструмент – беспилотный летательный аппарат. Он передает все необходимые данные на специальные приборы, что находятся на земле. Итог такой работы – готовая карта участка в деталях заданного масштаба, представленная в цифровом формате.
Если вам необходимо заказать аэрофотосъемку, «Геосервис» выполнит эту работу качественно. В штате компании работают специалисты, имеющие действующие квалификационные аттестаты. «Геосервис» располагает собственным парком оборудования для аэросъемки, при необходимости может предоставить лицензии и допуски на все виды услуг. В рамках сотрудничества возможно решение сложных и нестандартных задач.
Где и для чего проводится аэрофотосъемка
Аэрофотосъемка востребована в разных сферах:
Также с помощью аэрофотосъемки получают исходные данные. Эти базовые измерения используются на этапе подготовки проектной документации.
Услуга предоставляется для получения ортофотопланов в разных форматах, предшествует камеральному дешифрированию. Также на основе данных, полученных по итогу проведения аэрофотосъемки, создается цифровая картографическая основа – цифровые топографические планы, используемые при дальнейшем проведении кадастровых работ.
Преимущества и особенности
Можно выделить основные плюсы аэрофотосъемки:
Этот вид съемки, который осуществляется с высоты птичьего полета, позволяет добиться содержательных изображений в отличие от других способов, используемых для получения аналогичных данных. Во время съемки объектив затрагивает не только интересующий объект, но и территорию вокруг него. Это помогает в сборе полной и точной информации о рельефе, дает возможность оценить особенности расположения объектов по соседству, а также проанализировать инфраструктуру изучаемого района.
Виды аэрокосмических съемок, используемых в географических исследованиях
Роль и значение аэрокосмических методов в географических исследованиях. Масштаб и пространственное разрешение аэрокосмических снимков. Диапазон и методы регистрации электромагнитного излучения. Основные виды аэрокосмических съемок, их характеристика.
Рубрика | География и экономическая география |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 02.04.2017 |
Размер файла | 1,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Кафедра геодезии и картографии
ВИДЫ АЭРОКОСМИЧЕСКИХ СЪЕМОК, ИСПОЛЬЗУЕМЫХ В ГЕОГРАФИЧЕСКИХ ИССЛЕДОВАНИЯХ
Под аэрокосмическими методами принято понимать совокупность методов исследований атмосферы, земной поверхности, океанов, верхнего слоя земной коры с воздушных и космических носителей путем дистанционной регистраци и и последующего анализа идуще го от Земли электромагнитного излучения. Аэрокосмические методы обеспечивают определение точного географического положения изучаемых объектов или явлений, получение их качественных и ко личественных биогеофизических характеристик и их изменений во времени. В географических исследованиях главную роль играют методы, основанные на регистрации параметров излучения в виде двумерного изображения, снимка. Использование аэрокосмических снимков не только упрощает изучение труднодоступных территорий, но и обеспечивает географа д истанционной геопространственной информацией, которую другими способами получить не удается.
Целью курсового проектирования является изучение видов аэрокосмических съемок, их роли и значения в географических исследованиях.
Задачи курсового проектирования:
1.Узнать о роли, значении и происхождении аэрокосмических методов в географических исследованиях.
2. Познакомится с классификацией космических снимков.
3. В подробностях разобраться в каждом виде аэрокосмических съемок.
Во второй главе рассматривается классификация снимков.
Третья глава посвящена непосредственно видам аэрокосмических съемок, подробному рассмотрению каждого из них.
При подготовке курсовой работы были использованы курсы лекций, учебники различных авторов.
Уже на первых этапах использования дистанционных съемок отмечалась большая роль аэрокосмических методов при изучении природных ресурсов Земли.
Характерная особенность аэрокосмических методов состоит в том, что они являются дистанционными, не требующими прямого соприкосновения с объектом исследования и позволяющими свести непосредственные исследования к минимуму. Методы аэрокосмической съемки позволяют большую часть работы перенести в камеральные условия, увеличить скорость производства работ и вместе с тем увеличить достоверность и полноту результатов исследовательских и изыскательских работ[6].
Удобство работы со снимками заключается также в том, что к изображению можно обращаться неоднократно, изучать долгое время без больших затрат времени и средств, что затруднительно или невозможно при других методах, например традиционном для географии полевом экспедиционном методе исследований.
Однако самое главное заключается в том, что воздушные и космические снимки дают в руки исследователя новые сведения и факты, которые другими способами не могут быть получены [6].
1.1 Сущность аэрокосмических методов и связь с географическими дисциплинами
Аэрокосмические методы делятся на две основные группы: во-первых, визуальные исследования, включающие также глазомерную и полуинструментальную графическую съемки, и, во-вторых, различные виды съемок [6].
Съемка с летательных аппаратов составляет главную часть аэрокосмических методов. Она включает собственно съемку, составляющую преимущественно техническую задачу, и дешифрирование, или интерпретацию результатов съемки, что является географической задачей.
В качестве предмета географических исследований являются пространственно-временные свойства и отношения природных и социально-экономических объектов, проявляющиеся прямо или косвенно в собственном и отраженном излучении, дистанционно регистрируемом в виде снимка.
Метод аэрокосмических исследований основан на использовании снимков, которые, как показывает практика, представляют наибольшие возможности для географического изучения объектов[6].
Общей физической основой аэрокосмических методов является функциональная зависимость между регистрируемыми снимком параметрами излучения объекта и характеристиками, описывающими вид и пространственно-временное состояние объекта. С этой целью изучаются параметры регистрируемого излучения (интенсивность, спектральный состав и др.) в зависимости от влияния и оптико-метеорологических условий.
Развитие аэрокосмических методов базируется на достижениях таких дисциплин, как аэросъемка, космическая съемка, аэрофотография, математика, инженерная психология, фотограмметрия, дешифрирование, и других наук, от успехов которых прямо зависят возможности аэрокосмических методов и надежность получаемых с их помощью результатов [6].
В настоящее время трудно найти географическую науку, где не использовались бы аэрокосмические методы. Они прочно утвердились в метеорологических, геоморфологических, геологических, почвенных, геоботанических, гидрографических, океанологических исследованиях. В связи с этим появились такие разделы наук, как спутниковая метеорология, космическая гляциология, космическая картография и др.
Велика роль аэрокосмических снимков при изучении и картографировании ландшафтов. Результаты комплексного картографирования современных ландшафтов показывают высокую достоверность, точность, хорошую сопоставимость ландшафтных и отраслевых карт и их уникальное значение для прикладных ландшафтных исследований [6].
1.2 История развития аэрокосмических съемок
Начальный период. Начало наблюдений и фотографирования с воздуха относится к середине позапрошлого века. Французский военный офицер Гаспар Турнашон (Надар) в 1859 г сфотографировал деревню неподалеку от Парижа с воздушного шара. В России первые фотоснимки, также с воздушного шара, выполнены в 1886 г начальником воздухоплавательной команды военного ведомства поручиком А. М. Кованько [5].
Первая мировая война послужила толчком к быстрому развитию съемок с самолетов и переходу от отдельных фотографий с воздуха к практическому использованию аэроснимков. В 1916 г в русской армии при разведывательных отделениях штабов были сформированы специальные фотометрические (впоследствии фотограмметрические) части. В их задачу входило дешифрирование аэроснимков, перенос результатов на карту и размножение дополненных таким образом карт. Следующий шаг в использовании снимков связан с созданием подполковником М. В. Потте первого автоматического аэрофотоаппарата, съемка которым выполнялась не на светочувствительные стеклянные пластины, а на фотопленку[5].
1920-е годы. После окончания войны в Великобритании, Франции, США, а несколько позже и в Германии опыт, накопленный военными, стал распространяться и на области хозяйственной деятельности.
1930-е годы. В этот период аэрофотоснимки стали применяться в геологии, для изучения, таксации и эксплуатации лесов, а также при изучении Арктики. К этому же времени относится первый опыт использования аэрофотоснимков для изучения пустынь, рек, болот, рельефа. Аэросъемка становится новым орудием для работы в труднодоступных районах.
1940-е годы. Вторая мировая война дала новый импульс развитию методов получения и интерпретации снимков с воздуха. Появляется спектрозональная пленка (в американской литературе принят термин «цветная инфракрасная»), использование которой позволяло отделить вегетирующую растительность от окрашенной в зеленый цвет военной техники. В это время проводятся первые опыты применения радиолокаторов для исследования местности с воздуха. В последующие десятилетия технология радиолокационной съемки развивалась исключительно быстрыми темпами [5].
В развитии методов специальных исследований и тематического картографирования важную роль сыграла организация в 1944 г. Лаборатории аэрометодов Академии наук СССР (ныне Всероссийский научно-исследовательский институт космоаэрометодов в Санкт-Петербурге). В разные годы в Лаборатории были выполнены фундаментальные исследования по дешифрированию растительности, особенно лесов и болот, геологическому, ландшафтному дешифрированию. До настоящего времени остаются не превзойденными по глубине и всесторонней проработке исследования в области применения аэрометодов для изучения моря и морского шельфа.
1950-е годы. В этот период разработанные в военных целях методики съемки и дешифрирования становятся достоянием широкого круга исследователей и производственников. Расширяется круг отраслей науки и практики, в которых применяются аэрофотоснимки, совершенствуется методика их дешифрирования[5].
1970-е годы характеризуются вхождением в жизнь и все более широким применением космических методов.
В 1971 г. в нашей стране были получены из космоса фотографические снимки масштаба около 1:2 000 000, долгое время не имевшие аналогов по детальности изображения. Съемку осуществил экипаж орбитальной станции «Салют», трагически погибший при возвращении на Землю. В 1972 г. США вывели на орбиту автоматический спутник Ландсат(Landsat), на котором был установлен сканер, обеспечивавший получение многозональных снимков в четырех зонах видимого и ближнего инфракрасного участков спектра с размером элемента изображения 57×79 м на местности и предназначавшийся для изучения природных ресурсов [5].
Как в 1940-х годах аэросъемка послужила толчком к совершенствованию методов топографического картографирования, так в 1970-х широкое применение космических снимков знаменовало новый этап в развитии тематического, в том числе комплексного картографирования. Можно считать, что именно к этому времени относится формирование принципа многовариантности, «множественности» в получении и использовании снимков, съемка с разной высоты, разные носители, масштабы участки спектра, в которых peгистрируется излучение, разнообразные методы обработки получаемой информации [5].
Конец XX— начало XXI в. ознаменовались скачком в развитии способов получения космической информации Достижения в области волоконной оптики сделали возможным существенное улучшение пространственного и спектрального разрешения оптико-электронных съемочных систем. Сканеры с нескольких спутников разных стран получают космическую информацию с размерим пиксела от первых метров до 15 м и не в 3—4 каналах, как это было принято раньше, а в 7—15 Появились спектрометры, выполняющие гиперспектралъную съемку в 32-200 каналах.
Для последних лет характерно все более широкое внедрение компьютерного дешифрирования снимков, которое в большой мере обусловлено распространением и доступностью снимков, полученных электронно-оптическими системами и распространяемых в цифровом виде [5]. аэрокосмический географический съемка электромагнитный излучение
ГЛАВА 2. МАТЕРИАЛЫ АЭРОКОСМИЧЕСКИХ СЪЕМОК
Аэрокосмические негативы являются первичным материалом и обладают наиболее высокими изобразительными и информационными свойствами. Данные материалы используются при морфометрическом и инструментальном дешифрировании с применением специальных технических средств. Наиболее информативными являются негативы, полученные с панхроматических и инфрахроматических пленок[6].
Для визуального дешифрирования широко используются контактные аэрофотоснимки, которые получают путем контактной печати негатива с фотобумагой. Масштаб их соответствует масштабу воздушного фотографирования. Основным достоинством этих материалов являются их высокие изобразительные свойства, а также возможность получения стереоскопического изображения местности. В зависимости от разрешающей способности пленки масштаб аэрофотоснимков может уменьшаться или увеличиваться[6].
С цветных негативов могут быть отпечатаны как цветные, так и черно-белые аэрофотоснимки. Для более успешного дешифрирования целесообразно одновременно использовать различные аэрокосмические фотоснимки по масштабу и времени съемки.
Репродукции накидного монтажа получаются путем фотографирования накидного монтажа из последовательно смонтированных на жесткой основе по маршрутам залета аэрофотоснимков. Аэрофотоснимки накладываются друг на друга в пределах маршрута так, чтобы совпали их продольные перекрытия и были видны в правом углу номера снимков. Таким же путем совмещаются между собой и маршруты залета по поперечным перекрытиям. Масштаб накидного монтажа в 3-5 раз мельче масштаба аэрофотоснимков. Он также имеет свою номенклатуру. При дешифрировании используется для определения границ исследуемой территории и ее ландшафтного анализа и районирования, для подбора аэрофотоснимков, определения места закладки ключевых участков и маршрутов исследования[6].
Фотосхемой называют непрерывное фотографическое изображение местности, составленное из нескольких аэро- или космических фотоснимков без использования опорных точек. Фотосхемы изготавливаются на жесткой основе (картон, фанера) путем склеивания встык аэрофотоснимков по контурам или другим способом. Как правило, они монтируются на территорию исследования в пределах определенной топографической трапеции. В зарамочном оформлении фотосхемы указывается номенклатура, масштаб, время изготовления и организация, проводившая работу по составлению.
Основным достоинством фотосхемы, с точки зрения тематического дешифрирования, является их обзорность, что позволяет в камеральных условиях проводить ландшафтный анализ изучаемой территории, районирование, определять место и количество ключевых участков, маршрутов и почвенных разрезов.
Фотосхемы подразделяются на простые, мозаичные, уточненные и стереоскопические. Наиболее широко распространены простые фотосхемы, которые изготавливаются из контактных аэрофотоснимков одного и того же залета. Мозаичные фотосхемы могут монтироваться из аэрофотоснимков, различных как по сезонам, так и срокам съемки. Уточненные фотосхемы составляются из аэрофотоснимков, приведенных к единому масштабу и смонтированных на геодезической основе в условной системе координат. Стереоскопические фотосхемы составляют в тех случаях, когда необходимо получить представление о рельефе территории, не охватываемой форматом одного аэрофотоснимка. Они монтируются в виде двух полос шириной 10-12 см из левых и правых снимков. Для рассматривания их используются специальные стереоскопы[6].
Фотопланы при составлении тематических карт могут использоваться в качестве топографической основы для нанесения результатов дешифрирования. К недостаткам следует отнести невысокие изобразительные свойства фотопланов, которые теряются в результате редуцирования и трансформирования аэроснимков[6].
Фотокарты получаются путем совмещения фотокартографического и картографического изображений с точностью и в рамках карты. Возможны два варианта фотокарт. В первом случае на фоне тематической карты размещается фотоизображение ключевых участков. Второй способ заключается в размещении картографического изображения ключевых участков на фоне снимков[6].
2.1 Масштаб и пространственное разрешение аэрокосмических снимков
На протяжении всей истории развития аэросъемки показателем детальности изображения на снимках служил масштаб.Аэроснимки, как правило, подвергаются обработке (дешифрированию или измерительной обработке) в масштабе съемки, т.е. используются оригинальные негативы или позитивы на бумаге и пленке, изготовленные способом контактной печати. Масштабный ряд аэрофотоснимков в зависимости от характера использования можно разделить на несколько групп (таблица 2.1)[5].
Космические снимки и преимущества их использования в разных сферах
Наверно, многие уже сталкивались с космическими снимками. И вставал вопрос: для чего они вообще используются, как их применять на практике. В целом космические снимки представляют собой реалистичное изображение какой-либо местности, полученное из космоса. Это лучше, чем карты, ведь такие снимки являются динамическими и более актуальными. Разрешение подобной съемки является очень высоким, практически до нескольких сантиметров. По этой причине человек может увидеть даже такие детали, которые он не мог бы заметить на обычных картах.
Плюсы космических снимков
Космические снимки основаны на удаленном зондировании нашей планеты. Происходит наблюдение за поверхностью Земли с помощью разных авиа- и космических средств, а также мощной аппаратуры.
Плюсом такого подхода является то, что космические снимки являются удобной основой для топографического картографирования. Многие сервисы, существующие сегодня, работают с использованием космических карт и снимков. Как пример можно привести Google Maps или Яндекс.Карты. Сторонние сервисы тоже активно подтягиваются.
Еще один плюс космических снимков – с их помощью можно отслеживать разные процессы и явления, которые не всегда могут быть отражены на обычных картах. По снимкам можно, к примеру, составить прогноз погоды или определить места, в которых произошли чрезвычайные ситуации, лесные пожары, земельные проблемы. Космические снимки дают возможность решить вопросы с урожайностью, ведь на их основе можно составить действующие рабочие модели высокой эффективности.
Сферы применения снимков очень широки.
Плюсами такого подхода являются актуальность информации, оперативность ее получения, широкий охват в пространстве, а также возможность сопоставления полученных сведений.
На снимках можно всегда выделить разные объекты, даже мельчайшие. Аппаратура, которая стоит на современных комплексах слежения, ведет изучение сразу в нескольких диапазонах, а потому можно решать самые разные прикладные задачи.
Реферат на тему «Космическая съёмка. Виды и свойства космических снимков, применение их в картографии»
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Реферат по дисциплине
«Космическая съёмка. Виды и свойства космических снимков, применение их в картографии»
Космическая картография (с.8)
Контроль из космоса за окружающей средой (с.12)
Список литературы (с.16)
Цель работы: рассмотрение сути космической фотосъёмки.
Основным отличием фотографирования из космоса является: большая высота, скорость полета и их периодическое изменение при движении КЛА по орбите; вращение Земли, а следовательно, и объектов съемки относительно плоскости орбиты;быстрое изменение освещенности Земли по трассе полета КЛА; фотографирование через весь слой атмосферы; фотографическая аппаратура полностью автоматизирована. Большая высота съемки вызывает уменьшение масштаба снимка. Выбор высоты орбиты осуществляется исходя из задач, которые решаются при съемке, и необходимости получения фотографических снимков определенного масштаба. В связи с этим повышаются требованияк оптической системе фотоаппаратов с точки зрения качества изображения, которое должно быть хорошим по всему полю. Особенно высоки требования к геометрическим искажениям.
Мы являемся свидетелями того, как человек постепенно осваивает околоземное пространство и автоматами, засылаемыми с Земли, успешно изучают другие планеты солнечной системы. Созданные людьми и запущенные в космос искусственные спутники Земли передают на Землю фотографии нашей планеты, сделанные с больших высот.
Уже в настоящее время снимки, сделанные из космоса, используются для внесения изменения в содержании карт, являясь наиболее оперативным средством для выявления этих изменений. Дальнейшее развитие космической картографии приведет еще к более значительным результатам.
Значимость, преимущество снимков Земли из Космоса по сравнению с обычными аэрофотоснимками, бесспорны. Прежде всего, их обзорность – снимки с высоты в сотни и тысячи километров позволяют получать и изображения с охватом аэросъемки, и изображения территории протяженностью в сотни и тысячи км. Кроме того, они обладают свойствами спектральной и пространственной генирализации, т. е. отсеиванием второстепенного, случайного и выделением существенного, главного. Космическая съемка дает возможность получать изображение через регулярные промежутки времени, что в свою очередь, позволяют исследовать динамику любого процесса.
Принципиально новую информацию космические снимки дали геологам. Они позволили повысить глубинность исследований и породили новый вид картографических произведений – «космофотогеологические» карты. Важнейшим достоинством космических снимков является возможность ведения на них новых черт строения территорий, незаметных на обычных аэрофотоснимках. Именно фильтрация мелких деталей ведет к пространственной организации разоренных фрагментов крупных геологических образований в единое целое. Хорошо заметные на снимках линейные разрывные нарушения, называемые линеаментами, не всегда удается обнаружить при непосредственных полевых обследованиях. Карты линеаментов оказывают существенную помощь при глубинных поисках полезных ископаемых. Неизвестные ранее геологические структуры таким путем открыты в среднем течение Вилюя.
Космическое непрерывное картографирование состояния окружающей среды сегодня обозначают термином «мониторинг». Диапазон средств и методов картографа становиться все шире: от космических высот до подводных глубин, но везде – у пульта управления космическим топографом – планетоходом, у обычного теодолита, у создания карты стоит человек.
Космическую съемку ведут разными методами (рис. «Классификация космических снимков по спектральным диапазонам и технологии съемки»).
По характеру покрытия земной поверхности космическими снимками можно выделить следующие съемки:
Одиночное (выборочное) фотографирование выполняется космонавтами ручными камерами. Снимки обычно получаются перспективными со значительными углами наклона.
Маршрутная съемка земной поверхности производится вдоль трассы полета спутника. Ширина полосы съемки зависит от высоты полета и угла обзора съемочной системы.
Прицельная (выборочная) съемка предназначена для получения снимков специально заданных участков земной поверхности в стороне от трассы.
Глобальную съемку производят с геостационарных и полярно- орбитальных спутников. спутников. Четыре-пять геостационарных спутников на экваториальной орбите обеспечивают практически непрерывное получение мелкомасштабных обзорных снимков всей Земли (космическое патрулирование) за исключением полярных шапок.
Аэрокосмический снимок – это двумерное изображение реальных объектов, которое получено по определенным геометрическим и радиометрическим (фотометрическим) законам путем дистанционной регистрации яркости объектов и предназначено для исследования видимых и скрытых объектов, явлений и процессов окружающего мира, а также для определения их пространственного положения.
Космический снимок по своим геометрическим свойствам принципиально не отличается от аэрофотоснимка, но имеет особенности, связанные с:
• фотографированием с больших высот,
• и большой скоростью движения.
Так как спутник по сравнению с самолетом движется значительно быстрее, то требует коротких выдержек при съемке.
Космическая съемка различается по:
Эти параметры определяют возможности дешифрирования на космических снимках различных объектов и решения тех геологических задач, которые целесообразно решать с их помощью.
Космическая картография
Особенно широкое применение снимки из космоса нашли в картографии. И это понятно, потому что космический фотоснимок точно и с достаточной подробностью запечатлевает поверхность Земли и специалисты могут легко перенести изображение на карту.
Чтение (дешифрирование) космических снимков, так же как и аэрофотоснимков, основано на опознавательных (дешифровочных) признаках. Основными из них служат форма объектов, их размеры и тон. Реки, озера и другие водоемы изображаются на снимках темными тонами (черным цветом) с четким выделением береговых линий. Для лесной растительности характерны менее темные тона мелкозернистой структуры. Подробности горного рельефа хорошо выделяются резкими контрастными тонами, которые получаются на фотографии в результате различной освещенности противоположных склонов. Населенные пункты и дороги также можно опознать по своим дешифровочным признакам, но только под большим увеличением. На типографских оттисках этого сделать нельзя.
Использование космических снимков в картографических целях начинают с определения их масштаба и привязки к карте. Эту работу обычно выполняют по карте более мелкого масштаба, чем масштаб снимка, так как на нее приходится наносить границы не одного, а целого ряда снимков.
Составление карт по космическим снимкам выполняют так же как и по аэрофотоснимкам. В зависимости от точности и назначения карт применяют различные методы их составления с использованием соответствующих фотограмметрических приборов. Наиболее легко изготовить карту в масштабе снимка. Именно такие карты и помещают обычно рядом со снимками в альбомах и книгах. Для их составления достаточно скопировать на кальку со снимка изображения местных предметов, а затем с кальки перенести их на бумагу.
Такие картографические чертежи называют картосхемами. Они отображают только контуры местности (без рельефа), имеют произвольный масштаб и не привязаны к картографической сетке.
В картографии космические снимки используют прежде всего для создания мелкомасштабных карт. Достоинство космического фотографирования в этих целях заключается в том, что масштабы снимков сходны с масштабами создаваемых карт, а это исключает ряд довольно трудоемких процессов составления. Кроме того, космические снимки как бы прошли путь первичной генерализации. Это происходит в результате того, что фотографирование выполняется в мелком масштабе.
В настоящее время по космическим снимкам созданы разнообразные тематические карты. В ряде случаев характеристики некоторых явлений можно определить только по космическим снимкам, а получить их другими методами невозможно. По результатам космического фотографирования обновлены и детализированы многие тематические карты, созданы новые типы геологических ландшафтных и других карт. При составлении тематических карт особенно полезными являются снимки, полученные в различных зонах спектра, так как они содержат богатую и разностороннюю информацию.
Облик Земли постоянно меняется, и любая карта постепенно стареет. Космические снимки содержат самые свежие и достоверные сведения о местности и успешно используются для обновления карт не только мелкого, но и крупного масштаба. Они позволяют исправлять карты больших территорий земного шара. Особенно эффективно космическое фотографирование в труднодоступных районах, где полевые работы связаны с большой затратой сил и средств.
Съемка из космоса применяется не только для картографирования земной поверхности. По космическим фотоснимкам составлены карты Луны и Марса. При создании карты Луны были использованы также и данные, полученные с автоматических самоходных аппаратов «Луноход-1» и «Луноход-2». Как же велась съемка с их помощью? При движении самоходного аппарата прокладывался так называемый съемочный ход. Его назначение Ч создать каркас, относительно которого на будущую карту будут наносить топографическую ситуацию. Для построения хода измерялись длины пройденных отрезков пути и углы между ними. С каждой точки стояния «Лунохода» выполнялась телевизионная съемка местности. Телевизионные изображения и данные измерений передавались по радиоканалу на Землю. Здесь производилась обработка, в результате которой составлялись планы отдельных участков местности. Эти отдельные планы привязывались к съемочному ходу и объединялись.
Рис. 55. Фрагмент фотокарты Марса
Значительно сложнее обстоит дело со съемкой Венеры. Ее нельзя сфотографировать обычным путем, потому что она укрыта от средств оптического наблюдения плотными облаками. Тогда появилась мысль сделать ее портрет не в световых, а в радиолучах. Для этого разработали чувствительный радиолокатор, который мог как бы прощупывать поверхность планеты.
Чтобы разглядеть ландшафт Венеры, надо приблизить радиолокатор к планете. Это и сделали автоматические межпланетные станции «Венера-15» и «Венера-16».
Сущность радиолокационной съемки заключается в следующем. Установленный на станции радиолокатор посылает отраженные от Венеры радиосигналы на Землю в центр обработки радиолокационной информации, где специальное электронно-вычислительное устройство преобразует полученные сигналы в радиоизображение.
С ноября 1983 г. по июль 1984 г. радиолокаторы «Венеры-15» и «Венеры-16» отсняли северное полушарие планеты от полюса до тридцатой параллели. Затем с помощью ЭВМ на картографическую сетку было нанесено фотоизображение поверхности Венеры и, кроме того, построен профиль рельефа по линии полета станции.
Контроль из космоса за окружающей средой
Химическое загрязнение акваторий может быть изучено с помощью многозональных снимков, которые фиксируют, насколько угнетена водная и окаймляющая побережье растительность. По снимкам можно установить и биологическое загрязнение водоемов. Оно выдает себя чрезмерным развитием особой растительности, различимой на снимках в зеленой области спектра.
Выбросы промышленными и энергетическими предприятиями теплой воды в реки хорошо выделяются на инфракрасных снимках. Границы распространения теплой воды позволяют прогнозировать изменения в природной среде. Так, например, тепловые загрязнения нарушают становление ледяного покрова, что хорошо заметно даже в видимом диапазоне спектра.
Большой ущерб народному хозяйству наносят лесные пожары. Из космоса они заметны прежде всего благодаря дымовому шлейфу, простирающемуся иногда на несколько километров. Космическая съемка позволяет быстро определить масштабы распространения пожара. Кроме того, космические снимки помогают обнаружить поблизости облачность, из которой вызывают обильный дождь при помощи специальных распыленных в воздухе реактивов.
А теперь перенесемся на север нашей страны. Часто спрашивают, почему так много говорят о необходимости охраны природы Сибири и Дальнего Востока? Ведь интенсивность воздействия на нее пока во много раз меньше, чем в центральных районах.
Дело в том, что природа Севера значительно ранимее. Кто был там, тот знает, что после проехавшего по тундре вездехода почвенный покров не восстанавливается и развивается эрозия поверхности. Очищение водных бассейнов происходит в десятки раз медленнее, чем обычно, и даже небольшая вновь проложенная дорога может быть причиной труднообратимого изменения природной обстановки.
Космические съемки, решают разные задачи, связанные с дистанционным зондированием земли, и свидетельствуют об их широких возможностях. Поэтому космические методы и средства уже сегодня играют значительную роль в изучении Земли и около земного пространства. Технологии идут вперед, в ближайшем будущем их значение для решения этих задач будут существенно возрастать.
Богомолов Л. А., Применение аэросъёмки и космической съёмки в географических исследованиях, в кн.: Картография, т. 5, М., 1972 (Итоги науки и техники).
Виноградов Б. В., Кондратьев К. Я., Космические методы землеведения, Л., 1971;
Кусов В. С «Карту создают первопроходцы», Москва, «Недра», 1983 г., с. 69.
Леонтьев Н. Ф «Тематическая картография» Москва, 1981 год, из. «Наука», с.102.
Петров Б. Н. Орбитальные станции и изучение Земли из космоса, «Вестн. АН СССР», 1970, №10;