отношение числа появлений случайного события к общему числу наблюдений называется
Отношение числа появлений случайного события к общему числу наблюдений называется
91. Опасность потерь в процессе финансово-хозяйственной деятельности представляют собой ________________ риски.
• коммерческие
92. Опасность потерь коммерческими банками, кредитными учреждениями, инвестиционными институтами, селинговыми компаниями в результате превышения процентных ставок, выплачиваемых ими по привлеченным средствам, над ставками по предоставленным кредитам, относится к рискам
• процентным
93. Описательный подход к ППР называется:
• дескриптивным
94. Определение целей и задач организации, способов и средств их достижения относится к функции
• планирования
95. Определенность, риск и неопределенность в разработке управленческих решений — это:
• разные обстоятельства или условия по отношению к риску
96. Организация разрешения риска, рисковых вложений капитала, работы по снижению величины риска, процесса страхования рисков, относится в риск-менеджменте к функциям
• объекта управления
97. Особенно ярко тяжелое моральное бремя ответственности проявляется:
• на высших уровнях управления
98. Оставление риска за инвестором, т.е. на его ответственности, означает ________________ риска.
• удержание
99. Отношение числа появлений случайного события к общему числу наблюдений, называется:
• частотой
101. Побуждение финансовых менеджеров и других специалистов к заинтересованности в результате своего труда представляет собой в риск-менеджменте
• стимулирование
102. Поведенческие ограничения при принятии решений — это:
• факторы, затрудняющие межличностные и внутриорганизационные коммуникации
103. Под управленческим решением понимают:
• поиск и нахождение наиболее приемлемого способа решения задачи
104. Подведение общего результата действия различных факторов на обобщающий показатель производственно-хозяйственной деятельности предприятия — называется приемом
• сводки
105. Подход к менеджменту, базирующийся на том, что пригодность различных методов управления определяется конкретными обстоятельствами, — называется:
• ситуационным
Относительная частота случайного события
Урок 30. Алгебра 9 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Относительная частота случайного события»
Примерами таких событий являются: выпадение орла или решки при подбрасывании монеты; поражение мишени или промах при стрельбе; выпадение того или иного количества очков при бросании игрального кубика.
Отношение частоты к общему числу испытаний называют относительной частотой этого события.
Пусть некоторое испытание проводилось многократно в одних и тех же условиях. При этом фиксировалось, произошло или нет некоторое интересующее нас событие А.
Относительной частотой случайного события в серии испытаний называется отношение числа испытаний, в которых это событие наступило, к числу всех испытаний.
В ходе исследований выяснилось, что относительная частота появления ожидаемого события при повторении опытов в одних и тех же условиях, может оставаться примерно одинаковой, незначительно отличаясь от некоторого числа р.
При подбрасывании монеты отмечают те случаи, когда выпадает орёл.
Если монета однородна и имеет правильную геометрическую форму, то шансы выпадения орла или решки будут примерно одинаковы. Но при небольшом количестве бросков такой результат может не получиться.
А вот если испытание проводиться большое количество раз, то относительная частота выпадения орла близка к относительной частоте выпадения решки.
Многие учёные проводили такой эксперимент.
Так, например, английский математик Карл Пирсон бросал монету 24 тысячи раз, и относительная частота выпадения орла оказалось равной 0,5005.
А наш соотечественник, Всеволод Иванович Романовский, подбрасывая монету 80 тысяч 640 раз, нашёл, что относительная частота выпадения орла в его испытании была равна 0,4923.
Заметим, что в обоих случаях относительная частота выпадения орла очень близка к .
Говорят, что вероятность выпадения орла при подбрасывании монеты правильной геометрической формы равна .
В непрозрачном мешке лежит 7 зелёных и 12 синих кубиков. За раз можно доставать только 1 из них. Какова вероятность того, что из мешка достанут синий кубик?
Всего в мешке 19 кубиков. Значит, n=19.
Синий кубик мы можем достать 12 раз. Получаем, что m=12.
Относительная частота равна:
Вероятность того, что из мешка достанут синий кубик, равна .
Определить относительную частоту появления буквы «о» в слове «достопримечательность».
Общее число букв, то есть n=21. А количество букв «о», то есть m=3.
Значит относительная частота:
Отмечая число попаданий в корзину в каждой серии из 40 бросков, которые совершал баскетболист, получили такие данные:
Какова относительная вероятность попадания мяча в корзину для данного баскетболиста?
Определим общее число бросков. Было 5 серий по 40 бросков, то есть n=200.
Сосчитаем число попаданий в корзину:
Относительная вероятность попадания в корзину будет:
Стрелок совершил 50 выстрелов. Относительная частота попадания в цель оказалась равной 0,88. Сколько раз он промахнулся?
Зная общее число выстрелов n=50 и относительную вероятность попадания p=0,88. Найдем число попаданий в цель:
Отношение числа появлений случайного события к общему числу наблюдений называется
1. Случайная величина (СВ) и вероятность события.
2. Закон распределения СВ.
3. Биномиальное распределение (распределение Бернулли).
4. Распределение Пуассона.
5. Нормальное (гауссовское) распределение.
6. Равномерное распределение.
7. Распределение Стьюдента.
2.1 Случайная величина и вероятность события
Математическая статистика тесно связана с другой математической наукой – теорией вероятности и базируется на ее математическом аппарате.
Случайная величина (СВ) – это численная характеристика, измеряемая по ходу опыта и зависящая от случайного исхода. СВ реализуемая по ходу опыта и сама является случайной. Каждая СВ задает распределение вероятностей.
Основным свойством педагогических процессов, явлений служит их вероятностный характер (при данных условиях они могут произойти, реализоваться, но могут и не произойти). Для таких явлений существенную роль играет понятие вероятности.
Вероятность (Р) показывает степень возможности осуществления данного события, явления, результата. Вероятность невозможного события равна нулю p = 0, достоверного — единице p = 1 (100%). Вероятность любого события лежит в пределах от 0 до 1, в зависимости от того, насколько это событие случайно.
Существует два вида выборок СВ: зависимые и независимые. Если результаты измерения некоторого свойства у объектов первой выборки не оказывают влияния на результаты измерения этого свойства у объектов второй выборки, то такие выборки считаются независимыми. В тех случаях, когда результаты одной выборки влияют на результаты другой выборки, выборки считают зависимыми. Классический способ получения зависимых измерений – это двукратное измерение одного и того же свойства (или разных свойств) у членов одной и той же группы.
Событие А не зависит от события В, если вероятность события А не зависит от того произошло или нет событие В. События А и В независимы, если Р(АВ)=Р(А)Р(В). На практике независимость события устанавливается из условий опыта, интуиции исследователя и практики.
СВ бывает дискретной (мы можем пронумеровать ее возможные значения), например, выпадение игральной кости = 4, 6, 2, и непрерывной (ее функция распределения F(x) – непрерывна), например, время службы лампочки.
Математическое ожидание – числовая характеристика СВ, приближенно равная среднему значению СВ:
2.2 Закон распределения СВ
Подчиняются ли каким-либо законам явления, носящие случайный характер? Да, но эти законы отличаются от привычных нам физических законов. Значения СВ невозможно предугадать даже при известных условиях эксперимента, мы можем лишь указать вероятности того, что СВ примет то или иное значение. Зато зная распределение вероятностей СВ, мы можем делать выводы о событиях, в которых участвуют эти случайные величины. Правда, эти выводы будут также носить вероятностный характер.
Пусть некоторая СВ является дискретной, т.е. может принимать лишь фиксированные значения Xi. В этом случае ряд значений вероятностей P(Xi) для всех (i=1…n) допустимых значений этой величины называют её законом распределения.
При построении математической модели для проверки статистической гипотезы необходимо ввести математическое предположение о законе распределения СВ (параметрический путь построения модели).
Непараметрический подход к описанию математической модели (СВ не имеет параметрического закона распределения) менее точен, но имеет более широкую область применения.
Точно также, как и для вероятности случайного события, для закона распределения СВ есть только два пути его отыскания. Либо мы строим схему случайного события и находим аналитическое выражение (формулу) вычисления вероятности (возможно, кто–то уже сделал или сделает это до вас!), либо придется использовать эксперимент и по частотам наблюдений делать какие–то предположения (выдвигать гипотезы) о законе распределения.
Конечно же, для каждого из «классических» распределений уже давно эта работа проделана – широко известными и очень часто используемыми в прикладной статистике являются биномиальное и полиномиальное распределения, геометрическое и гипергеометрическое, распределение Паскаля и Пуассона и многие другие.
Для почти всех классических распределений немедленно строились и публиковались специальные статистические таблицы, уточняемые по мере увеличения точности расчетов. Без использования многих томов этих таблиц, без обучения правилам пользования ими последние два столетия практическое использование статистики было невозможно.
Сегодня положение изменилось – нет нужды хранить данные расчетов по формулам (как бы последние не были сложны!), время на использование закона распределения для практики сведено к минутам, а то и секундам. Уже сейчас существует достаточное количество разнообразных пакетов прикладных компьютерных программ для этих целей.
Среди всех вероятностных распределений есть такие, которые используются на практике особенно часто. Эти распределения детально изучены и свойства их хорошо известны. Многие из этих распределений лежат в основе целых областей знаний – таких, как теория массового обслуживания, теория надежности, контроль качества, теория игр и т.п.
2.3 Биномиальное распределение (распределение Бернулли)
Возникает в тех случаях, когда ставится вопрос: сколько раз происходит некоторое событие в серии из определенного числа независимых наблюдений (опытов), выполняемых в одинаковых условиях.
Для удобства и наглядности будем полагать, что нам известна величина p – вероятность того, что вошедший в магазин посетитель окажется покупателем и (1– p) = q – вероятность того, что вошедший в магазин посетитель не окажется покупателем.
Если X – число покупателей из общего числа n посетителей, то вероятность того, что среди n посетителей оказалось k покупателей равна
Формулу (1) называют формулой Бернулли. При большом числе испытаний биномиальное распределение стремиться к нормальному.
2.4 Распределение Пуассона
Играет важную роль в ряде вопросов физики, теории связи, теории надежности, теории массового обслуживания и т.д. Всюду, где в течение определенного времени может происходить случайное число каких-то событий (радиоактивных распадов, телефонных вызовов, отказов оборудования, несчастный случаях и т.п.).
Рассмотрим наиболее типичную ситуацию, в которой возникает распределение Пуассона. Пусть некоторые события (покупки в магазине) могут происходить в случайные моменты времени. Определим число появлений таких событий в промежутке времени от 0 до Т.
Случайное число событий, происшедших за время от 0 до Т, распределено по закону Пуассона с параметром l=аТ, где а>0 – параметр задачи, отражающий среднюю частоту событий. Вероятность k покупок в течение большого интервала времени, (например, – дня) составит
2.5 Нормальное (гауссовское) распределение
Нормальное (гауссовское) распределение занимает центральное место в теории и практике вероятностно-статистических исследований. В качестве непрерывной аппроксимации к биномиальному распределению его впервые рассматривал А.Муавр в 1733 г. Через некоторое время нормальное распределение снова открыли и изучили К.Гаусс (1809 г.) и П.Лаплас, которые пришли к нормальной функции в связи с работой по теории ошибок наблюдений.
Непрерывная случайная величина Х называется распределенной по нормальному закону, если ее плотность распределения равна
Значит, эта ордината убывает с возрастанием значения s (кривая «сжимается» к оси Ох) и возрастает с убыванием значения s (кривая «растягивается» в положительном направлении оси Оу). Изменение значений параметра
Нормальное распределение с параметрами
Для μ=0, σ=1 график принимает вид:
Эта кривая при μ=0, σ=1 получила статус стандарта, ее называют единичной нормальной кривой, то есть любые собранные данные стремятся преобразовать так, чтобы кривая их распределения была максимально близка к этой стандартной кривой.
Нормализованную кривую изобрели для решения задач теории вероятности, но оказалось на практике, что она отлично аппроксимирует распределение частот при большом числе наблюдений для множества переменных. Можно предположить, что не имея материальных ограничений на количество объектов и время проведения эксперимента, статистическое исследование приводится к нормально кривой.
2.6 Равномерное распределение
Равномерное распределение вероятностей является простейшим и может быть как дискретным, так и непрерывным. Дискретное равномерное распределение – это такое распределение, для которого вероятность каждого из значений СВ одна и та же, то есть:
где N – количество возможных значений СВ.
Распределение вероятностей непрерывной CВ Х, принимающие все свои значения из отрезка [а;b] называется равномерным, если ее плотность вероятности на этом отрезке постоянна, а вне его равна нулю:
2.7 Распределение Стьюдента
Это распределение связано с нормальным. Если СВ x1, x2, … xn – независимы, и каждая из них имеет стандартное нормальное распределение N(0,1), то СВ имеет распределение, называемое распределением Стьюдента:
Отношение числа появлений случайного события к общему числу наблюдений называется
Математическая статистика тесно связана с другой математической наукой – теорией вероятности и базируется на ее математическом аппарате.
Теория вероятности – это наука, которая изучает закономерности, порожденные случайными событиями.
Случайная величина (СВ) – это численная характеристика, измеряемая по ходу опыта и зависящая от случайного исхода. СВ реализуемая по ходу опыта и сама является случайной. Каждая СВ задает распределение вероятностей.
Основным свойством педагогических процессов, явлений является их вероятностный характер (при данных условиях они могут произойти, реализоваться, но могут и не произойти). Для таких явлений существенную роль играет понятие вероятности.
Существует два вида выборок СВ: зависимые и независимые. Если результаты измерения некоторого свойства у объектов первой выборки не оказывают влияния на результаты измерения этого свойства у объектов второй выборки, то такие выборки считаются независимыми. В тех случаях, когда результаты одной выборки влияют на результаты другой выборки, выборки считают зависимыми. Классический способ получения зависимых измерений – это двукратное измерение одного и того же свойства (или разных свойств) у членов одной и той же группы.
Событие А не зависит от события В, если вероятность события А не зависит от того произошло или нет событие В. События А и В независимы, если Р(АВ)=Р(А)Р(В). На практике независимость события устанавливается из условий опыта, интуиции исследователя и практики.
СВ бывает дискретной (мы можем пронумеровать ее возможные значения), например, выпадение игральной кости =4,6,2, и непрерывной (ее функция распределения F ( x ) – непрерывна), например, время службы лампочки.
Математическое ожидание – числовая характеристика СВ, приближенно равная среднему значению СВ:
2.2 Закон распределения СВ
Подчиняются ли каким-либо законам явления, носящие случайный характер? Да, но эти законы отличаются от привычных нам физических законов. Значения СВ невозможно предугадать даже при известных условиях эксперимента, мы можем лишь указать вероятности того, что СВ примет то или иное значение. Зато зная распределение вероятностей СВ, мы можем делать выводы о событиях, в которых участвуют эти случайные величины. Правда, эти выводы будут также носить вероятностный характер.
Пусть некоторая СВ является дискретной, т.е. может принимать лишь фиксированные значения Xi. В этом случае ряд значений вероятностей P(Xi) для всех (i=1…n) допустимых значений этой величины называют её законом распределения.
При построении математической модели для проверки статистической гипотезы необходимо ввести математическое предположение о законе распределения СВ (параметрический путь построения модели).
Непараметрический подход к описанию математической модели (СВ не имеет параметрического закона распределения) менее точен, но имеет более широкую область применения.
Точно также, как и для вероятности случайного события, для закона распределения СВ есть только два пути его отыскания. Либо мы строим схему случайного события и находим аналитическое выражение (формулу) вычисления вероятности (возможно, кто–то уже сделал или сделает это за нас!), либо придется использовать эксперимент и по частотам наблюдений делать какие–то предположения (выдвигать гипотезы) о законе распределения.
Конечно же, для каждого из «классических» распределений уже давно эта работа проделана – широко известными и очень часто используемыми в прикладной статистике являются биномиальное и полиномиальное распределения, геометрическое и гипергеометрическое, распределение Паскаля и Пуассона и многие другие.
Для почти всех классических распределений немедленно строились и публиковались специальные статистические таблицы, уточняемые по мере увеличения точности расчетов. Без использования многих томов этих таблиц, без обучения правилам пользования ими последние два столетия практическое использование статистики было невозможно.
Сегодня положение изменилось – нет нужды хранить данные расчетов по формулам (как бы последние не были сложны!), время на использование закона распределения для практики сведено к минутам, а то и секундам. Уже сейчас существует достаточное количество разнообразных пакетов прикладных компьютерных программ для этих целей.
Среди всех вероятностных распределений есть такие, которые используются на практике особенно часто. Эти распределения детально изучены и свойства их хорошо известны. Многие из этих распределений лежат в основе целых областей знаний – таких, как теория массового обслуживания, теория надежности, контроль качества, теория игр и т.п.
2.3 Биномиальное распределение (распределение Бернулли)
Возникает в тех случаях, когда ставится вопрос: сколько раз происходит некоторое событие в серии из определенного числа независимых наблюдений (опытов), выполняемых в одинаковых условиях.
Для удобства и наглядности будем полагать, что нам известна величина p – вероятность того, что вошедший в магазин посетитель окажется покупателем и (1– p) = q – вероятность того, что вошедший в магазин посетитель не окажется покупателем.
Если X – число покупателей из общего числа n посетителей, то вероятность того, что среди n посетителей оказалось k покупателей равна
P ( X = k ) = , где k=0,1,…n (1)
Формулу (1) называют формулой Бернулли. При большом числе испытаний биномиальное распределение стремиться к нормальному.
2.4 Распределение Пуассона
Играет важную роль в ряде вопросов физики, теории связи, теории надежности, теории массового обслуживания и т.д. Всюду, где в течение определенного времени может происходить случайное число каких-то событий (радиоактивных распадов, телефонных вызовов, отказов оборудования, несчастный случаях и т.п.).
Рассмотрим наиболее типичную ситуацию, в которой возникает распределение Пуассона. Пусть некоторые события (покупки в магазине) могут происходить в случайные моменты времени. Определим число появлений таких событий в промежутке времени от 0 до Т.
Случайное число событий, происшедших за время от 0 до Т, распределено по закону Пуассона с параметром l=аТ, где а>0 – параметр задачи, отражающий среднюю частоту событий. Вероятность k покупок в течение большого интервала времени, (например, – дня) составит
P(Z=k) = (2)
2.5 Нормальное (гауссовское) распределение
Нормальное (гауссовское) распределение занимает центральное место в теории и практике вероятностно-статистических исследований. В качестве непрерывной аппроксимации к биномиальному распределению его впервые рассматривал А.Муавр в 1733 г. Через некоторое время нормальное распределение снова открыли и изучили К.Гаусс (1809 г.) и П.Лаплас, которые пришли к нормальной функции в связи с работой по теории ошибок наблюдений.
Непрерывная случайная величина Х называется распределенной по нормальному закону, если ее плотность распределения равна
(3)
где
совпадает с математическим ожиданием величины Х:
=М(Х), параметр s совпадает со средним квадратическим отклонением величины Х: s =s(Х). График функции нормального распределения, как видно из рисунка, имеет вид куполообразной кривой, называемой Гауссовой, точка максимума имеет координаты (а;
). Значит, эта ордината убывает с возрастанием значения s (кривая «сжимается» к оси Ох) и возрастает с убыванием значения s (кривая «растягивается» в положительном направлении оси Оу). Изменение значений параметра
(при неизменном значении s) не влияет на форму кривой, а лишь перемещает кривую вдоль оси Ох.
Нормальное распределение с параметрами =0 и s=1 называется нормированным. Функция распределения СВ в этом случае будет иметь вид:
. (4)