для чего нужен внешний ключ
Взаимные блокировки и внешние ключи в SQL Server
Введение
В реляционных базах данных внешние ключи (foreign key) используются для обеспечения целостности связей между таблицами. Простыми словами, внешний ключ — это столбец (или несколько столбцов), ссылающийся на первичный ключ другой таблицы. Таблица с внешним ключом называется дочерней, а с первичным — родительской. При вставке строки в дочернюю таблицу проверяется наличие значения внешнего ключа в родительской таблице. Эти дополнительные операции иногда могут вызывать проблемы с блокировками и приводить к взаимоблокировкам. В этой статье мы изучим, почему это происходит, и как решать подобные проблемы.
Будем использовать две таблицы: Department (Отдел) и Employee (Сотрудник). Столбец DepId в таблице Employee определен как внешний ключ, поэтому значения этого столбца будут проверяться на наличие соответствующих значений в столбце DepartmentId таблицы Department.
Что происходит за кулисами INSERT
Исследуем, какие операции выполняются при вставке данных в дочернюю таблицу (Employee).
Сначала вставим строку в родительскую таблицу (Department).
Перед выполнением следующего запроса включим отображение фактического плана выполнения и вставим строку в таблицу Employee (дочернюю).
Clustered Index Insert вставляет данные в кластерный индекс, а также обновляет некластерные индексы. Если внимательно посмотреть на этот оператор, то можно заметить, что для него не указано имя объекта. Причина этого как раз в том, что при вставке данных в кластерный индекс таблицы Employee, эти данные одновременно добавляются в некластерный индекс. Эти два индекса можно увидеть во всплывающей подсказке оператора Clustered Index Insert.
Clustered Index Seek проверяет существование значения внешнего ключа в родительской таблице.
Nested Loops сравнивает вставленные значения внешних ключей со значениями, возвращаемые оператором Clustered Index Seek. В результате этого сравнения на выходе получается результат, который указывает, существует значение в родительской таблице или нет.
Assert оценивает результат оператора Nested Loops. Если Nested Loops возвращает NULL, то результат Assert будет ноль, и запрос вернет ошибку. В противном случае операция INSERT выполнится успешно.
Взаимные блокировки
При вставке данных в столбец с внешним ключом выполняются дополнительные операции по проверке существования данных в родительской таблице. В некоторых случаях, например, при массовой вставке, эта проверка может привести к взаимоблокировкам, когда несколько транзакций пытаются обратиться к одним и тем же данным. Попробуем смоделировать эту ситуацию. Сначала вставим данные в таблицу Department.
После этого создадим глобальную временную таблицу, которая поможет со вставкой строк в Employee.
Следующие запросы выполним в разных сессиях. Сначала «Часть 1» первого запроса:
И первую часть второго запроса:
А теперь — вторые части запросов.
В результате возникла взаимная блокировка.
Давайте проанализируем, что произошло:
Первая часть Запроса-1 открывает транзакцию и вставляет строку в таблицу Department. Страница данных Department блокируется монопольной блокировкой намерения (IX, intent exclusive lock), а вставленная строка — монопольной блокировкой (X, exclusive lock).
Первая часть Запроса-2 также открывает транзакцию и вставляет строку в Department. Страница данных таблицы Department блокируется монопольной блокировкой намерения (IX), а вставленная строка — монопольной блокировкой (X). На данный момент проблем с блокировками нет.
Вторая часть Запроса-1, он начинает сканировать первичные ключи таблицы Department для проверки ссылочной целостности вставленных строк. Однако одна из строк заблокирована монопольной блокировкой в Запросе-2. В этом случае Запрос-1 должен дождаться завершения Запроса-2.
Запрос-2 блокируется при попытке прочитать строки, вставленные в Department в Запросе-1. У нас получилась взаимная блокировка.
Приведенный ниже граф взаимных блокировок иллюстрирует то, о чем мы говорили. Сессия 71 (Запрос-1) получил монопольную блокировку (X) для строк таблицы Employee и хочет получить разделяемую блокировку (S) для строк таблицы Department. В это же время сессия 51 получила эксклюзивную блокировку (X) для строк таблицы Department и хочет получить монопольную блокировку (X) для строк таблицы Employee. В результате между этими двумя сессиями возникает борьба за ресурсы, и SQL Server завершает одну из сессий.
Устранение взаимных блокировок
Мы с вами увидели, что при массовых INSERT проверка целостности внешнего ключа вызывает проблему с блокировками. На самом деле эта проблема связана с методом доступа к данным родительской таблицы. Взглянув на план выполнения второй части запросов, мы увидим оператор Merge Join.
Соединение Merge Join является самым эффективным, но требует предварительной сортировки входных данных. В нашем случае при сканировании родительской таблицы Merge Join сталкивается с заблокированной строкой, и не может продолжить сканирование, пока блокировка не будет снята.
Мы можем изменить метод доступа к данным с помощью OPTION (LOOP JOIN). При использовании хинта LOOP JOIN, оптимизатор запросов SQL Server сгенерирует другой план выполнения и заменит оператор Merge Join оператором Nested Loops, а оператор Clustered Index Scan будет заменен оператором Clustered Index Seek. С помощью Clustered Index Seek доступ к данным родительской таблицы осуществляется напрямую, поэтому не требуется ждать заблокированных строк. С другой стороны, оператор Nested Loops выполняет построчное чтение, а Merge Join — одно последовательное чтение. Эти два изменения метода доступа к данным снижают вероятность блокировки запроса из-за наличия других блокировок.
Row Count Spool используется для подсчета количества строк, возвращаемых оператором Clustered Index Seek, и передачи этой информации в оператор Nested Loops. Этот оператор используется оптимизатором запросов SQL Server для проверки существования строк, но не содержащихся в них данных.
Заключение
В этой статье мы узнали, как внешние ключи влияют на план запроса INSERT и добавляют некоторые операции в процесс его выполнения. Также мы увидели, что в некоторых ситуациях внешние ключи могут приводить к взаимным блокировкам. Для устранения проблем с блокировками можно использовать хинт LOOP JOIN.
Материал подготовлен в рамках курса «MS SQL Server Developer». Всех желающих приглашаем на открытый урок «SQL Server и Docker». На открытом уроке мы поговорим о контейнерах, а также рассмотрим развертывание SQL Server в контейнерах.
Что такое внешний ключ базы данных? Учебник для новичков
Эта статья написана Бриттни Паркер, писателем из Girls Write Tech, которая специализируется на написании технических материалов. Они стремятся побудить больше женщин-разработчиков делиться своими знаниями.
В мире баз данных существует избыток типов данных и структур, и определение того, какие из них использовать, часто является предметом горячих споров. Понимание различных ключей может помочь вам понять, как лучше всего использовать конкретную систему для ваших уникальных потребностей.
По мере того, как сложность структур данных продолжает развиваться, базы данных перешли на реляционные базы данных и мультимодальные базы данных, которые сегодня используются наиболее часто. Теперь мы можем связать различные таблицы осмысленным образом, используя внешние ключи.
Внешний ключ — это столбец (или группа столбцов), используемый в реляционной базе данных для связи данных между таблицами. Серверы внешних ключей для ссылки на первичный ключ другой существующей таблицы.
Сегодня это руководство познакомит вас с внешними ключами и покажет, как их использовать в SQL.
Что такое внешний ключ в базе данных?
Внешние ключи структурированы в базе данных как общий компонент, связывающий вместе две таблицы. Внешний ключ всегда должен ссылаться на первичный ключ в другом месте.
Исходная таблица называется родительской или ссылочной таблицей, а ссылочная таблица с внешним ключом называется дочерней таблицей.
Ссылки на внешние ключи хранятся в дочерней таблице и связаны с первичным ключом в отдельной таблице.
Столбец, действующий как внешний ключ, должен иметь соответствующее значение в связанной таблице. Это создает ссылочную целостность.
Мы должны быть осторожны при создании таблиц или изменении таблиц (например, при вставке или удалении данных из столбца внешнего ключа), чтобы избежать изменения или разрушения связи между ними.
Скажем, у нас есть две таблицы с именами customerи order. Мы можем использовать внешний ключ для создания связи между ними. В ordersтаблице мы создаем ключ, который ссылается на клиента (т.е. CUSTOMER_ID) в другой таблице.
В CUSTOMER_IDтаблице заказов становится внешним ключом, который ссылается на родительский или первичный ключи в таблице клиентов.
Примечание. Чтобы вставить запись в таблицу заказов, необходимо выполнить ограничение внешнего ключа.
Если мы попытаемся ввести CUSTOMER_IDданные, которых нет в таблице клиентов, мы нарушим целостность ссылочных полномочий таблицы.
Ограничение FK
Точное соединение данных — главная директива. Интеграция программного обеспечения и возможность безопасного обмена данными между приложениями зависят от целостности данных и взаимосвязей с базами данных.
Вот где возникает ограничение. Внешние ключи часто ограничиваются, чтобы гарантировать, что пользователь не может предпринимать действия, которые могут повредить связи зависимостей между таблицами. Это также не позволяет пользователям вводить недопустимые данные.
Мы можем использовать ограничения внешнего ключа, чтобы поддерживать ссылочную целостность наших отношений внешнего ключа. Есть много ссылочных действий, которые мы можем использовать для ограничения, в том числе:
Когда дело доходит до именования ограничений внешнего ключа, мы должны соблюдать следующие общие правила:
Внешний ключ против первичного ключа
В отличие от внешнего ключа, первичный ключ работает в реляционной базе данных для уникальной идентификации определенных записей. Первичные ключи должны быть уникальными для таблицы и часто используются в качестве абсолютной точки отсчета для других типов ключей базы данных.
Внешние ключи используются больше как ссылка, чем как уникальный идентификатор конкретной строки или записи.
В то время как в конкретной таблице или реляционной базе данных можно использовать несколько внешних ключей, для каждой базы данных разрешен только один первичный ключ. Для внешних ключей разрешены повторяющиеся значения, а также нулевые значения.
Нулевые значения не допускаются для первичных ключей, и ссылки на любые первичные ключи в таблице должны быть удалены перед удалением строки / записи первичного ключа.
Внешний ключ против составного ключа
Составные ключи в реляционной базе данных используются для объединения двух или более столбцов в определенной таблице, создавая уникальный идентификатор для этой комбинации столбцов.
Хотя технически ключ-кандидат в качестве составного ключа проверяет уникальность, составные ключи формируются только тогда, когда конкретный столбец или столбцы используются в сочетании друг с другом.
Как и внешние ключи, составные ключи могут использоваться для связывания нескольких таблиц в реляционной базе данных. В отличие от внешних ключей, составные ключи можно определить как первичный ключ при создании некоторых таблиц SQL.
Ссылочные действия внешнего ключа
Ссылочная целостность ограничивается внешними ключами, гарантируя, что значения в конкретной таблице соответствуют значениям, которые находятся в другой таблице.
Эти ссылочные действия усиливают целостность структуры таблицы, снижая вероятность ошибки, гарантируя, что ссылочные столбцы содержат только уникальные наборы значений.
Внешние ключи также могут принимать нулевые значения, но важно отметить, что это может ограничить их способность защищать целостность указанного столбца, поскольку нулевые значения не проверяются.
Совет: передовой опыт указывает на использование NOT NULLограничения при создании внешних ключей для поддержания структурной целостности базы данных.
Создание структуры данных, которая является гибкой и достаточно расширяемой для долгосрочного использования, может становиться все труднее по мере роста сложности и объема данных. Добавление неструктурированных данных может легко привести к ошибкам.
Внешние ключи — чрезвычайно ценный компонент, помогающий обеспечить ясность, согласованность и способность вашей базы данных быстро предоставлять точные результаты.
Внешние ключи в SQL и MySQL
Давайте посмотрим на синтаксис с использованием SQL и MySQL. В следующем примере создается FOREIGN KEY в столбце «PersonID».
Узнайте больше о различных типах баз данных здесь
Следующий синтаксис позволяет нам назвать ограничение FOREIGN KEY:
Реальный пример SQL
А теперь давайте уточним. Ниже Actorsтаблица является таблицей, на которую ссылаются, и называется родительской таблицей. Здесь справочная таблица DigitalAssetsявляется дочерней таблицей.
Мы объявляем столбец как внешний ключ в дочерней таблице, только если для столбца определен индекс. Если столбец не имеет индекса, его нельзя использовать в качестве внешнего ключа.
В нашем примере мы изменяем наш DigitalAssetsи устанавливаем ActorIDстолбец как внешний ключ следующим образом:
Теперь, если мы добавим в DigitalAssetsтаблицу строку с идентификатором актера, которого нет в Actorsтаблице, появится сообщение об ошибке:
Мы также можем создать ограничение внешнего ключа для самой таблицы. Например, это может быть таблица сотрудников со столбцом для идентификации менеджера. Поскольку менеджер также является сотрудником, также будет присутствовать строка, идентифицирующая его.
Идентификатор менеджера будет ссылаться на идентификатор сотрудника в том же столбце, а идентификатор сотрудника будет действовать как внешний ключ.
Ссылочная целостность: внешний ключ (FOREIGN KEY) стр. 1
Внешний ключ – это ограничение, которое поддерживает согласованное состояние данных между двумя таблицами, обеспечивая так называемую ссылочную целостность. Этот тип целостности означает, что всегда есть возможность получить полную информацию об объекте, распределенную по нескольким таблицам. Причины такого распределения, связанные с принципами проектирования реляционной модели, мы рассмотрим в дальнейшем.
Связь между таблицами не является равноправной. В ней всегда есть главная таблица и таблица подчиненная. Связи бывают двух типов: «один к одному» и «один ко многим». Связь «один к одному» означает, что строке главной таблицы соответствует не более одной строки (т.е. одна или ни одной) в подчиненной таблице. Связь «один ко многим» означает, что одной строке главной таблицы отвечает любое число строк (в том числе и 0) в подчиненной таблице.
Связь устанавливается посредством равенства значений определенных столбцов в главной и подчиненной таблицах. При этом столбец (или набор столбцов в случае составного ключа) в подчиненной таблице, который соотносится со столбцом (или набором столбцов) в главной таблице, и называется внешним ключом.
Количество столбцов в списках 1 и 2 должно быть одинаковым, а типы данных этих столбцов должны быть попарно совместимы.
Вот как можно создать внешний ключ в таблице PC:
Замечание. Для главной таблицы можно не указывать столбец в скобках, если он является первичным ключом, т.к. он может быть только один. В нашем случае так и есть, поэтому последнюю строку можно было написать в виде
Аналогичным образом создаются внешние ключи в таблицах Printer и Laptop.
В чем практическая польза FOREIGN KEY в таблицах MySQL?
Не понимаю в чем практическая польза FOREIGN KEY для таблиц. Например, у меня есть три таблицы:
На это практическая польза FOREIGN KEY заканчивается? У меня по этому поводу сомнения.
2 ответа 2
FOREIGN KEY используется для ограничения по ссылкам. Когда все значения в одном поле таблицы представлены в поле другой таблицы, говорится, что первое поле ссылается на второе. Это указывает на прямую связь между значениями двух полей.
Когда одно поле в таблице ссылается на другое, оно называется внешним ключом, а поле на которое оно ссылается, называется родительским ключом. Имена внешнего ключа и родительского ключа не обязательно должны быть одинаковыми. Внешний ключ может иметь любое число полей, которые все обрабатываются как единый модуль. Внешний ключ и родительский ключ, на который он ссылается, должны иметь одинаковый номер и тип поля, и находиться в одинаковом порядке. Когда поле является внешним ключом, оно определенным образом связано с таблицей, на которую он ссылается. Каждое значение, (каждая строка ) внешнего ключа должно недвусмысленно ссылаться к одному и только этому значению (строке) родительского ключа. Если это условие соблюдается, то база данных находится в состоянии ссылочной целостности.
SQL поддерживает ссылочную целостность с ограничением FOREIGN KEY. Эта функция должна ограничивать значения, которые можно ввести в базу данных, чтобы заставить внешний ключ и родительский ключ соответствовать принципу ссылочной целостности. Одно из действий ограничения FOREIGN KEY — это отбрасывание значений для полей, ограниченных как внешний ключ, который еще не представлен в родительском ключе. Это ограничение также воздействует на способность изменять или удалять значения родительского ключа
Ограничение FOREIGN KEY используется в команде CREATE TABLE (или ALTER TABLE (предназначена для модификации структуры таблицы), содержащей поле, которое объявлено внешним ключом. Родительскому ключу дается имя, на которое имеется ссылка внутри ограничения FOREIGN KEY.
Подобно большинству ограничений, оно может быть ограничением таблицы или столбца, в форме таблицы позволяющей использовать многочисленные поля как один внешний ключ.
Пример: есть две таблицы users и emails:
Между ними есть зависимость в виде users.user_id и emails.user_id, и мы хотим что в поле emails.user_id не смогло записываться ничего кроме значения с таблицы users столбец user_id, для этого и создаем ограничение в виде внешнего ключа:
Допустим если мы удаляем пользователя то и автоматически удаляем все записи связанные с ним, в данном случае его адрес электронной почты.
Первичный ключ и внешний ключ таблиц реляционных баз данных
Вступление
В прошлой статье (устройство реляционной БД) мы разбирали, как устроена реляционная (табличная) база данных и выяснили, что основными элементами реляционной базы данных являются: таблицы, столбцы и строки, а в математических понятиях: отношения, атрибуты и кортежи. Также часто, строки называют записями, столбцы называют колонками, а пересечение записи и колонки называют ячейкой.
Важно вспомнить, что содержание строки и названия столбцов должны быть уникальны в пределах одной базы данных.
Типы данных в базах
Важно понимать, что можно создавать базы для любых типов данных: текстов, дат, времени, событий, цифр. В зависимости от типа информации реляционные базы данных делят на типы. Каждый тип данных (атрибут) имеет свое обозначение:
Это основные типы данных, которых на самом деле гораздо больше. Причем, каждый язык программирования имеет свой набор системных атрибутов (типов данных).
Что такое первичный ключ и внешний ключ таблиц реляционных баз данных
Первичный ключ
Выше мы вспоминали: каждая строка (запись) БД должна быть уникальна. Именно первичный ключ в виде наборов определенных значений, максимально идентифицируют каждую запись. Можно определить по-другому. Первичный ключ: набор определенных признаков, уникальных для каждой записи. Обозначается первичный ключ, как primary key.
Primary key (PK) очень важен для каждой таблицы. Поясню почему.
На логической связи между таблицами, стоит остановиться подробнее.
Ключ внешний
Foreign key, кратко FK. Обеспечивает однозначную логическую связь, между таблицами одной БД.
Например, есть две таблицы А и В. В таблице А (обувь), есть первичный ключ: размер, в таблице В (цвет) должна быть колонка с названием размер. В этой таблице «размер» это и будет внешний ключ для логической связи таблиц В и А.
Более сложный пример.
Две таблицы данных: Люди и Номера телефонов.
Таблица: Люди
primary key | Имя |
1 | Зайцев |
2 | Белкин |
3 | Волков |
Таблица: Номера телефонов
primary key | телефон | foreign key |
1 | 12345 | 1 |
2 | 54321 | 1 |
3 | 678910 | 2 |
4 | 109876 | 3 |
5 | 13579 | 3 |
В таблице Номера телефонов PK уникален. FK этой таблицы является PK таблицы Люди. Связь между номерами телефонов и людьми обеспечивает FK таблицы телефонов. То есть:
В завершении добавлю, что любая СУБД, управляющая базой данных, имеет технические возможности составить первичный ключ.